Вопросы и Ответы

Чего ждут от испытания Большого адронного коллайдера

1

Большой адронный коллайдер (сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований, на границе Швейцарии и Франции, недалеко от Женевы. БАК является самой крупной экспериментальной установкой в мире.

Благодаря БАК физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Работы на коллайдере начались в 2007 году. Их суть заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем выделяемая в единичном акте термоядерного синтеза.

Что ожидают от Большого адронного коллайдера:

Научные достижения:

По мнению специалистов в этой области, запуск БАК предвещает переход человечества на принципиально новый вид энергии, открытие неизвестных до сих пор химических элементов, суперсимметрии (теоретическая идея об устройстве нашего мира) и многое другое.

Ученые рассчитывают исследовать результат столкновения элементарных частиц с невиданной доселе энергией – 14 тераэлектронвольт (ТэВ). Согласно их оценкам, в результате такого столкновения образуются миллионы разных частиц, среди которых возможно будут обнаружены и частицы, существование которых в природе на данный момент является чисто гипотетическим. В тоже время, последствия столкновения частиц с такими энергиями прогнозируются теориями, которые сами нуждаются в доработках, а значит, есть вероятность того, что природа устроена “немного” иначе, чем это видится физикам и результатом такого эксперимента может стать неожиданный феномен.

Основная задача физиков состоит в том, чтобы построить замкнутую и непротиворечивую теорию, в рамках которой можно было бы объяснять и прогнозировать определенный круг природных явлений. Например, все магнитные и электрические явления в природе рассматриваются в рамках электромагнитной теории Максвелла, все стационарные тепловые процессы рассматриваются в рамках классической термодинамики и статистической физики, все процессы движения и взаимодействия элементарных частиц (электрона, протона, нейтрона, …и т.д.) и их ассоциаций (молекул, атомов, …и т.д.) в масштабах скоростей намного меньших скорости света, рассматриваются в квантовой механике (нерелятивиская квантовая механика), … и т.д. Именно на основе таких завершенных теорий современные инженеры и физики разрабатывают сложнейшие технические устройства, которые становятся неотъемлемой частью нашей жизни: сотовая связь, лазеры, телевидение, компьютеры, ядерные реакторы,… и т.д.

В тоже время есть целый ряд физических явлений для объяснения, которых пока еще не создано удовлетворительных теорий, это направления, в которых активно ведутся экспериментальные и теоретические исследования. Одним из таких направлений и является физика элементарных частиц. В настоящее время в физике элементарных частиц разрабатываются разные теоретические модели, наиболее удачной на сегодняшний день считается так называемая -

Стандартная модель.

Для того чтобы физики смогли построить стройную теорию элементарных частиц, нужен экспериментальный материал. Некоторый такой материал стало возможным получить только в наше время, когда уровень техники и технологий достиг достаточно высокого уровня, чтобы можно было производить эксперименты “фантастической” сложности. Речь идет об ускорителях элементарных частиц - БАК.

Перспективы, которые открываются перед человечеством на пути таких экспериментов трудно вообразить, т.к. их результатом станет экспериментальный материал, который позволит создать завершенные теоретические модели, в рамках которых ученые смогут объяснить происхождение вселенной, узнают истинную размерность нашего пространства, смогут понять механизм появления гравитации, … и т.д. Что это даст человечеству? Тоже, что и другие завершенные теории, а именно, теоретическую основу для инженерных разработок. Только в данном случае мы получим теории, которые позволят нам в будущем управлять гравитацией, искусственно искривлять пространство-время, взаимодействовать с вселенными в других измерениях, создавать каналы, позволяющие мгновенно обмениваться информацией за счет квантовой телепортации, создавать двигатели для космических аппаратов на принципиально новых механизмах действия, … и т.д.

Угрозы:

1) появление черных дыр

Дело в том, что общая теория относительности Эйнштейна и заключение, сделанное с помощью компьютерных вычислений, свидетельствует о возможности в ходе эксперимента появления черных дыр с последующей цепной реакцией захвата окружающей материи, что приведет к неминуемой гибели Вселенной.

Но физики пытаются убедить весь мир, что проект безопасен. По их заверениям, черные дыры в том виде, в котором мы их сейчас знаем, вообще не могут рождаться на БАК. Практики отзываются об идее коллайдера так: Это лишь занятная математическая конструкция, но не более того.

Все же этот процесс не исключен при условии, если окажется верной одна очень смелая гипотеза теоретиков — о том, что гравитация становится сильной при уровне энергии порядка 1 ТэВ.

Как сообщает Чоптуик, заручившись поддержкой Франса Преториуса из Принстонского университета, им удалось воспроизвести несколько столкновений на основании сложных математических формул из общей теории относительности. Задействовав сотни компьютеров, ученые вычислили гравитационное взаимодействие между сталкиваемыми частицами и установили, что черная дыра появляется только в том случае, если общая энергия составит около 13 Ep (Энергия Планка).

Значит ли это, что коллайдер будет формировать черные дыры? Не совсем. Энергия Планка в квинтильон раз больше, чем максимальная энергия БАК. Коллайдер сможет рождать черные дыры только в том случае, если вместо того, чтобы существовать в трех измерениях, пространство будет иметь больше измерений, которые замыкаются. Если черные дыры смогут родиться на БАК, то они должны появляться и при столкновении космических лучей с небесными телами. Тот факт, что Земля, Солнце, а также компактные звезды существуют миллиарды лет и не превратились в черную дыру, означает, что на самом деле — опасности нет - утверждает Чоптуик.

2) возникновение Странного Вещества

Еще одна, не менее важная гипотеза — угроза возникновения Странного Вещества. На стыке ядерной физики и физики элементарных частиц есть одно направление исследований, которое бурно развивается в последние годы. Это изучение свойств ядерного вещества при высоких температурах и давлениях. Уже установлено, что в зависимости от условий ядерная материя может существовать в разных состояниях, и эти состояния обладают разной степенью устойчивости.

Все это разнообразие реализуется лишь при очень высоких температурах или давлениях. В нормальных же условиях ядерное вещество образует обычные ядра, состоящие из протонов и нейтронов.

Однако некоторое время назад у теоретиков закралось подозрение (а не доказательство!), что одно из этих состояний — так называемая странная материя (то есть ядерное вещество с большой концентрацией странных кварков) — может оказаться стабильнее обычной ядерной материи.

Если это так, то тогда капелька такой странной материи, которую в научных кругах называют стрейнджлет (strangelet), или страпелька, родившись на ускорителе, будет стабильной. Более того, она сможет вступать в реакцию с обычными ядрами и превращать их тоже в странную материю. Иными словами, возникает еще один вариант сценария катастрофы, при котором страпелька разрушает всю Землю, превращая ее в комок странной материи.

YouTube

 Изменить 

Ещё Чего ждут

Чего ждут от испытания Большого адронного коллайдера | Вопрос и Ответ
Большой адронный коллайдер (сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их

Фото Наука и образование

 Изменить 
Чего ждут от испытания Большого адронного коллайдера